Record Detail Back
Traffic Management For High-Speed Networks
Any network has bottlenecks or congestion points, i.e., locations where more data may arrive than the network can carry. A common cause for congestion is a mismatch in speed between networks. For example, a typical high-performance local area network (LAN) environment in the next several years may have the architecture shown in Figure 1. While the servers will use new high-speed asynchronous transfer mode (ATM) connections at the OC-3 rate of 155 Mbps, many clients will still depend on old, inexpensive but slower, 10-Mbps Ethernet connections. Data flowing from the servers at 155 Mbps to the clients at 10 Mbps will experience congestion at the interface between the ATM and Ethernet networks. Congestion can also occur inside a network node that has multiple ports. Such a node can be a switch such as an ATM switch or a gateway such as a router. As depicted in Figure 2, congestion arises when data, destined for a single output port, arrive at many different input ports. The faster and more numerous these input ports are, the severer the congestion will be. A consequence of congestion is the loss of data due to buffer overflow. For data communications in which every bit must be transmitted correctly, lost data will have to be retransmitted, and will result in degraded network utilization and increased communications delay for end users.
NATIONAL ACADEMY PRESS - Organizational Body
0-309-59073-6
NONE
Computer Science
English
1997
1-31
LOADING LIST...
LOADING LIST...