Record Detail Back

XML

Concepts in Spin Electronics


Nowadays information technology is based on semiconductor and ferromagnetic materials. Information processing and computation are performed using electron charge by semiconductor transistors and integrated circuits, but on the other hand the information is stored on magnetic high-density hard disks by electron spins. Recently, a new branch of physics and nanotechnology, called magneto- electronics, spintronics, or spin electronics, has emerged, which aims to simul- taneously exploit both the charge and the spin of electrons in the same device and describes the new physics raised. One of its tasks is to merge the processing and storage of data in the same basic building blocks of integrated circuits, but a broader goal is to develop new functionality that does not exist separately in a ferromagnet or a semiconductor. Research in magnetic materials has long been characterized by unusually rapid transitions to technology. A prominent example is the discovery in 1988 of one of the first spin electronics effects, namely the giant magnetoresistance (GMR) effect in magnetic layered structures, which has already found market application in read heads in computer hard disk drives and also in magnetic sen- sors. Recently new technology based on the tunneling magnetoresistance (TMR) of magnetic tunnel junctions as magnetic random access memory (MRAM) is emerging into the electronic memory market. It is to be expected that future progress in spin electronics will lead to similarly rapid applications, in particular once the merging of semiconductor and magnetic technologies is achieved.
Sadamichi Maekawa - Personal Name
0–19–856821–5
NONE
Information Technology
English
2006
1-413
LOADING LIST...
LOADING LIST...